

Tim Stack Technical Integration AREVA NP, Inc.

Demands on Reactor Building

- High Energy Pipe Ruptures (LOCA, MSLB)
- Failure of vessels and tanks
- Aircraft Hazards
- Load Drops
- Internal Explosion and Missiles
- > Fire
- > Flooding
- > Seismic
- > Explosion Pressure Wave

EPR Reactor Building Systems

- Containment Building
- Shield Building
- Annulus Ventilation System
- Non-Safety Related Containment Ventilation
- > Penetrations, Hatches, Airlocks
- Containment Isolation
- Severe Accident Mitigation Design Features (e.g., Basemat Cooling)

EPR Reactor Building

- > Containment wall post-tensioned concrete with steel liner
- > Shield Bldg wall reinforced concrete
- > Containment Free Volume = 2.8 Mft³
- > Containment Inside Diameter = 153.5 ft.
- > Containment Wall Thickness = 4.3 ft.
- > Design pressure = 62 psig
- > Design temperature = 338 °F
- > Annulus sub-atmospheric and filtered to reduce radioisotope release
- > In-Containment Refueling Water Storage Tank (~500,000 gal)
- > Severe accident mitigation features
- Design leak-rate at design pressure for a 24-hour period is less than 0.25 percent by volume

Containment Liner Plate

- Liner thickness = ¼"
- Carbon steel liner with no stress relief required
- Liner extends into basemat to prevent release of radioactivity into ground

Containment Liner Plate

Shield Building

- Primary Function Protect Containment Building from external hazards
 - Reinforced Concrete (without liner)
 - Inside Diameter 53 m (174 ft.)
 - Isolated from Containment down to basemat
 - 1.8 m (5' 10") thick above adjacent Safeguards Building roofs
 - 1.3 m (4' 3") thick below adjacent Safeguards Building roofs

Containment P/T Response to DBA

- Containment sprays and fan coolers <u>not</u> required to mitigate short-term pressure or temperature responses to DBAs
- Containment sprays and fan coolers <u>not</u> required to mitigate long-term pressure response to DBAs
 - RHR system sufficient to reduce pressure to ½ the peak in < 8 hrs after LOCA

LOCA

SLB

Radiological Consequences to DBA

- Containment sprays <u>not</u> required for lodine removal following design basis accident:
 - Annulus Ventilation System
 - Maintains annulus at least 620
 Pa (0.09 psi) sub-atmospheric
 - Two safety-related, 100% capacity air extraction systems powered from separate Safeguards divisions
 - Exhaust all annulus air through HEPA and Iodine filters prior to release
 - Limit containment building leakage to 0.25% volume/day at design pressure

Containment Isolation

> Function is containment isolation to minimize release of fission products to environment.

- > EPR Containment isolation provisions:
 - Assured through penetration and isolation valve arrangements needed to isolate containment.
 - Generally include minimum of 2 isolation valves powered and operated independently. Valves are automatically isolated or locked closed.
 - Satisfy NRC criteria for containment isolation.

> Penetration (local resistance)

Overturning (global stability)

- Secondary Missiles (spalling)
- > Induced Vibrations

> Fire (fuel)

Commercial Aircraft Loaded Areas

Summary - Reactor Building System

- EPR Reactor Building System consists of:
 - Post-tensioned concrete containment building with steel liner
 - Reinforced concrete shield building that surrounds containment building
 - Annulus ventilation system
 - Containment isolation system
 - Design features to mitigate severe accident scenarios
- Mitigate containment pressure/temperature response to DBAs <u>without</u> safety-related sprays or fan coolers.
- Mitigate radiological consequences to DBAs <u>without</u> safety-related sprays.
- Protect against spectrum of aircraft hazards and external explosions.